Preview

Moscow Pedagogical Journal

Advanced search

THE CENEAST EDUCATIONAL CENTER OF VIRTUAL INTERUNIVERSITY NETWORK

Abstract

TEMPUS project of the CENEAST aims at developing an innovative virtual interuniversity networked educational center. In addition the CENEAST center will enable and promote lifelong learning at large within the society by making learning materials accessible outside the traditional classroom environment to various parties within the society from students and teachers to practitioners and policy-makers. The CENEAST center will ensure not only the feedforward but also feedback (from beneficiaries to the center). It is expected that a spiral effect will be created to ensure a continuous improvement of the center.

About the Authors

A. . Kaklauskas
Vilnius Gediminas Technical University
Russian Federation


N. . Siniak
Belarusian State Technological University
Russian Federation


L. . Peciure
Vilnius Gediminas Technical University
Russian Federation


References

1. Каклаускас А., Завадскас Э.-К. Биометрическая и интеллектуальная поддержка решений: монография. 2-е изд., испр и доп. Вильнюс, 2013. 412 с.

2. Du H. The Study of Secondary Intelligent Organization Methods of CBT Training Library based on Information Entropy. AASRI Procedia, Volume 3, 2012. P. 277283.

3. Kaklauskas A., Zavadskas E.K. Intelligent and biometrics decision support. Vilnius, 2010. 343 p.

4. Li N., Yi W., Sun M., Gong G. Development and application of intelligent system modeling and simulation platform. Simulation Modelling Practice and Theory, Volume 29, December 2012. P. 149-162.

5. Li Z., Xiong Z., Zhang Y., Liu C., Li K. Fast text categorization using concise semantic analysis. Pattern Recognition Letters 32 (3), 2011. P. 441-448.

6. Lloret E., Palomar M. Tackling redundancy in text summarization through different levels of language analysis. Computer Standards & Interfaces, In Press, Corrected Proof, Available online 13 September 2012.

7. Loshin D. Business Intelligence. Chapter 20 - Emerging Business Intelligence Trends. Elsevier Inc., 2013. 348 p.

8. Nothman J., Ringland N., Radford W., Murphy T., Curran J.R. Learning multilingual named entity recognition from Wikipedia. Artificial Intelligence 194, 2013. P. 151-175.

9. Ropero J., Gуmez A., Carrasco A., Leуn C. A Fuzzy Logic intelligent agent for Information Extraction: Introducing a new Fuzzy Logic-based term weighting scheme. Expert Systems with Applications, Volume 39, Issue 4, March 2012. P. 4567-4581.

10. Rowinski D. Near Field Communication & The Trough of Disillusionment: [Электронный ресурс]. URL: http://readwrite.com/2012/08/20/nfc-and-the-trough-of-disillusionment#awesm=~ovQOJv7azTO xP7 (дата обращения: 30.01.2014)


Review

Views: 89


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-4990 (Print)
ISSN 2949-4974 (Online)