РАЗДЕЛ III. ТЕОРИЯ И МЕТОДИКА ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

УДК 378

DOI: 10.18384/2310-7219-2020-3-124-130

МЕЖДИСЦИПЛИНАРНОСТЬ КАК ВАЖНЕЙШИЙ ФАКТОР МОДЕРНИЗАЦИИ ТЕХНИЧЕСКОГО ОБРАЗОВАНИЯ

Кленина Л. И., Бурковская М. А.

Национальный исследовательский университет «Московский энергетический институт» 111250, г. Москва, ул. Красноказарменная, д. 14, Российская Федерация

Аннотация

Цель. Исследование современных подходов к фактору междисциплинарности в подготовке инженерных кадров.

Процедура и методы. Проведён анализ зарубежного опыта подготовки инженеров, который был сравнён с отечественным, в том числе с собственным многолетним практическим опытом авторов.

Результаты. Сделано заключение, что выпускник технического вуза, входящий в неоиндустриальное производство, должен обладать универсальными и в значительной мере междисциплинарными компетенциями. При этом фактор междисциплинарности призван быть определяющим при разработке содержания учебных программ, а также стать важнейшим элементом методики преподавания фундаментальных дисциплин.

Теоретическая и/или практическая значимость. Результаты исследования могут использоваться при разработке новых учебных курсов и конкретных методик преподавания фундаментальных дисциплин в технических вузах.

Ключевые слова: междисциплинарность, промышленная революция «Индустрия 4.0», подготовка инженеров, неоиндустриальное производство

INTERDISCIPLINARITY AS THE MOST IMPORTANT FACTOR OF ENGINEERING EDUCATION MODERNIZATION

L. Klenina, M. Burkovskaya

National Research University «Moscow Power Engineering Institute» 14, Krasnokazarmennaya ul., Moscow, 111250, Russian Federation

Abstract

Aim. To study modern approaches to the factor of interdisciplinarity in the training of future engineers.

© СС ВҮ Кленина Л. И., Бурковская М. А., 2020.

Methodology. The analysis of foreign experience of training engineers, which was comparable to the domestic one, including the authors' own long-term practical experience, was carried out.

Results. It is concluded that a graduate of a technical University, which is part of the neo-industrial production, should have universal and largely interdisciplinary competencies. The factor of interdisciplinarity is intended to be a determining factor in designing the content of educational programs, and become an important element of the teaching methodology of fundamental disciplines.

Research implications. The results of the research can be used in the development of new training courses and specific methods of teaching fundamental disciplines in technical universities.

Keywords: Interdisciplinarity, the Fourth industrial revolution, the training engineers for neo-industrial production

Введение

Подготовка инженеров - важнейшая задача, от решения которой зависит конкурентоспособность государства и, в конечном счёте, его национальная безопасность. В послании Федеральному Собранию 15 января 2020 г. президент РФ В. В. Путин заметил: «Рынок труда сегодня динамично меняется, постоянно появляются новые профессии, усложняются требования к существующим, и высшая школа должна гибко и быстро реагировать на эти запросы»¹. Такая постановка задачи президентом делает актуальным пересмотр классической формы образования, которая предполагала отдельные программы по учебным дисциплинам. Требуется форма образования, которая основывается на комплексности и активном проникновении одних дисциплин в другие. Это неизбежно приводит к внедрению в образовательный цикл междисциплинарности.

Современное российское высшее образование находит различные пути для своего совершенствования. По статистическим данным за 2019 г., в Российской Федерации насчитывалось 4,2 млн. студентов, которые обучаются в 1264 высших учебных заведениях, из которых 920 – государственные, а 344 – частные [8, с. 28–29]. В быстро развивающемся новом мире требования к будущим инженерам в плане их профессиональной

подготовки часто меняются уже на протяжении самого срока обучения. В. В. Путин считает, что ещё во время обучения в вузе студенты должны иметь возможность выбора нового направления или новой программы, включая освоение смежных профессий уже после двух лет обучения.

Исследователи обращают внимание на проблему конвергенции, т. е. объединения, взаимопроникновения наук и технологий. М. В. Ковальчук из российского научного центра «Курчатовский институт» отмечает: «Сама логика развития науки привела нас от узкой специализации к междисциплинарности, затем наддисциплинарности, а теперь фактически к необходимости объединения наук. Но не к простому геометрическому сложению результатов, а к их синергетическому эффекту, взаимопроникновению» [4, с. 19].

Междисциплинарный характер образования позволяет студентам выбирать нужные образовательные траектории, а при необходимости - менять их. Междисциплинарность также упрощает решение одной из ключевых задач системы образования - формирование единой целостной картины мира в сознании студентов. Междисциплинарный подход позволяет сохранить объёмы знаний и повысить их практическую значимость. Междисциплинарные связи углубляют учебный процесс без перегрузки студентов, а также дают возможность студентам овладевать универсальными и профессиональными компетенциями.

¹ Стенограмма Послания Путина Федеральному Собранию 15.01.2020 [Электронный ресурс]. URL: prezident.org/tekst/stenogramma ... (дата обращения: 02.03.2020).

Индустрия 4.0 и элитное образование

Немецкий инженер и экономист по образованию профессор Клаус Шваб, который основал в Давосе Всемирный экономический форум, в историческом контексте проанализировал все три промышленные революции, происходившие в человеческом обществе, начиная со второй половины XVIII в. Он пришёл к выводу о наступлении нового этапа развития общества в XXI в. в связи с глобальными изменениями, происходящими в мире. К. Шваб утверждает: «Распространяя технологию "умных заводов" четвёртая промышленная революция создаёт мир, в котором виртуальные и физические системы производства гибко взаимодействуют между собой на глобальном уровне. Это обеспечивает полную адаптацию продуктов и создание новых операционных моделей» [10, с. 16].

А. М. Алексанков (Санкт-Петербургполитехнический университет Петра Великого) считает, что в современном понимании термин: «Индустрия 4.0», или «Четвёртая промышленная революция», «означает цифровизацию и интеграцию вертикальных и горизонтальных цепочек создания стоимости с одновременной цифровизацией продуктов, услуг и сопутствующей бизнес среды» [1]. Кардинальные и системные преобразования четвёртой промышленной революции тесно связаны с цифровизацией и цифровой экономикой как основной чертой современного этапа общественного развития. По мнению К. Шваба, «уникальность четвёртой промышленной революции, помимо темпов развития и широкого охвата, заключается в растущей гармонизации и интеграции большого количества различных научных дисциплин и открытий» [10, с. 20].

Однако многие учёные обращают внимание и на другие особенности новой промышленной революции. Юваль Ной

Харари (р. 1976), защитивший докторскую диссертацию в Оксфорде и преподающий всемирную историю в Еврейском университете в Иерусалиме, утверждает: «Слияние биотехнологий с информационными технологиями уже в ближайшем будущем может лишить работы миллионы людей и нанести удар по свободе и равенству. Алгоритмы Больших данных способны породить цифровые диктатуры, при которых вся власть окажется в руках немногочисленной элиты, а большинство людей будет страдать не от эксплуатации, а - что гораздо хуже от своей ненужности» [9, с. 13]. Широкая междисциплинарная подготовка специалиста способна в значительной степени обезопасить его востребованность на рынке труда в новом мире.

Современное производство, согласно программе «Индустрия 4.0», основано на 6 факторах, «которые необходимо учитывать выпускникам вузов и техническим специалистам, уже работающим в технической сфере, а также преподавателям вузов» [2, с. 10]. Устойчивость в развитии России XXI в., «безопасность страны и перспективы технологической независимости во всё большей степени определяются научно-техническим потенциалом, в том числе фундаментальной наукой и уровнем квалификации кадров» [7, с. 249]. От высококвалифицированного элитного инженера, обладающего лидерскими качествами, требуется умение решать инновационные технические задачи с использованием цифровых технологий и фундаментальных знаний, а также подбирать и возглавлять команду профессиональных единомышленников.

«В университетах, ориентированных на подготовку национальной научно-технической элиты, обучение выстраивается на платформе STEM (Science – естественные науки, Technology – технологии, Engineering – инженерное проектирование, Mathematics – математика), что подразумевает междисциплинарный подход, соединяющий разрозненные естественнона-

Программа развития цифровой экономики в Российской Федерации до 2035 года [Электронный ресурс]. URL: http://strategy.ru (дата обращения: 18.02. 2020).

учные знания и проектную деятельность в единое целое. Всё чаще в эту аббревиатуру добавляется "А", (Art-искусство) – Steam, что подчёркивает значение также и гуманитарной компоненты» [6, с. 140].

Инженерное лидерство - это главное направление в Программе им. Бернарда M. Гордона (Bernard M. Gordon – Engineering Leadership Program), которой придерживается Массачусетский технологический институт (Massachusetts Institute of Technology) в своей деятельности по подготовке элитных инженерных кадров. «Программа направлена на развитие у выпускников университета особых компетенций инженера-руководителя, способного принимать технические и организационные решения по управлению проектами создания качественно новых продуктов инженерной деятельности (технических объектов, технологий, материалов, программного обеспечения)» [5, c. 196–197].

Элитное техническое образование активно внедряют передовые отечественные вузы, такие как: Московский физико-технический институт, Московский институт электронной техники, Сибирский федеральный университет, Омский государственный технический университет, Томский политехнический университет и ряд других славных отечественных вузов. Каждый вуз имеет свои особенности в реализации элитной инженерной подготовки. В Национальном исследовательском университете «Московский энергетический институт» (НИУ «МЭИ») внедрение программы элитной подготовки инженерных кадров в учебный процесс началось с 2019 г. Эта программа получила название «ЭТАЛОН» (Эффективность, Творчество, Активность, Лидерство, Образование, Наука). По этой программе со студентами, обладающими высоким рейтингом и объединёнными в экспериментальные группы, работают наиболее опытные преподаватели НИУ «МЭИ», имеющие учёные звания и степени.

Междисциплинарная парадигма инженерной подготовки

С переходом российской высшей школы на Федеральные государственные стандарты высшего профессионального образования третьего поколения (ФГОС ВПО 3 и 3+) по подготовке специалистов утвердился компетентностный подход¹. Опора на профессиональные и общекультурные компетенции создала условия для выстраивания учебного процесса на основе гармоничного соединения прикладных профессиональных, фундаментальных естественно-математических и мировоззренческих гуманитарных наук.

В зарубежной научной литературе введён термин «метакомпетенции» (metacompetencies), или «мягкие навыки» (softskills) [11]. Передовые отечественные технические университеты оперативно реагируют на запросы общества, внедряя новые междисциплинарные дисциплины и факультеты. В процессе нашей многолетней преподавательской деятельности в Национальном исследовательском университете «МЭИ» (НИУ «МЭИ») мы наблюдаем, как стремительно меняется образовательный процесс.

Преподавательское сообщество понимает необходимость качественных изменений учебных программ, и эти изменения идут. Создаются и уже работают межпредметные курсы, соответствующие формированию тех профессиональных компетенций, потребность в которых диктуется новой промышленной революцией «Индустрия 4.0». Не претендуя на полноту, приводим некоторые примеры.

В Институте электротехники НИУ «МЭИ» в учебный процесс введены курсы: «Инженерный менеджмент», «Управление отходами», «Современные концепции и теория менеджмента», «Процессы и аппараты систем защиты окружающей среды», «Химия окружающей среды», «Промышленная экология». В

Федеральный государственный образовательный стандарт (ФГОС ВО 3++) [Электронный ресурс]. URL: http://fgosvo.ru (дата обращения: 12.02.2020).

Институте радиотехники и электроники им. В. А. Котельникова на радиотехническом факультете (ИРЭ РТФ) НИУ «МЭИ» студентам предлагаются курсы: «Экономика и организация производства», «Деловая коммуникация», «Взаимодействие электромагнитных полей с биообъектами», «Биофизические основы живых систем», «Математическое моделирование биологических процессов и систем», «Методы математической обработки медико-биологических данных», подготовлен спецкурс по изучению «Интернета вещей». В Институте электроэнергетики НИУ «МЭИ» разрабатывается программа для магистратуры «Смарт-технологии в электроэнергетике».

Среди компетенций выпускников «МЭИ» заявлены следующие: умение применять современные программные средства для подготовки проектной и конструкторско-технологической документации, знание современных принципов поиска, хранения, обработки, анализа и представления в требуемом виде информации, способность к разработке математических и физических моделей, способность осуществлять математическое и компьютерное моделирование, знание принципов планирования экспериментальных исследований.

Большой популярностью у абитуриентов НИУ «МЭИ» пользуются новые междисциплинарные специальности, такие как: «Биотехнические системы и технологии», «Гидроэнергетика и нетрадиционные и возобновляемые источники энергии», «Экономика и управление на предприятиях теплоэнергетики», «Техногенная безопасность в электроэнергетике и электротехнике», «Менеджмент в электротехнике». Очень востребованы у абитуриентов направления подготовки, связанные с проблемами кибербезопасности, которая объединяет подходы, методы и средства защиты киберфизических систем цифрового производства.

Считаем своевременным создание на базе Национального исследовательско-

го университета «МЭИ», обладающего богатейшими традициями подготовки высококлассных технических алистов, Гуманитарно-прикладного института. Институт пользуется успехом у абитуриентов не в последнюю очередь благодаря тому, что многие дисциплины преподаются опытными преподавателями МЭИ. Межпредметные курсы на стыке гуманитарных и технических дисциплин активно внедряются в образовательный процесс самого МЭИ. «Гуманитарные программы в негуманитарных учебных заведениях США и ведущих западноевропейских стран в принципе полифункциональны. Разумеется, изучение социальных и гуманитарных наук имеет отчётливо выраженную идеологическовоспитательную направленность. ... но, вместе с тем, оно содержит в себе весомый "развивающий" компонент. В этом плане изучение гуманитарных наук рассматривается в качестве стратегического фактора инновационного развития, действующего как на уровне отдельно взятой личности, так и "человеческого капитала" в целом» [3, с. 281].

Междисциплинарность нужно внедрять в процессе преподавания и отдельных фундаментальных дисциплин, например, курса высшей математики. К сожалению, мы наблюдаем снижение интереса со стороны студентов к этой дисциплине, обусловленное, в частности, традиционной манерой изложения и перегруженностью материалом, отсутствием понятной студентам связи с практикой и техническими задачами. Построение междисциплинарного курса требует серьёзной работы по корректировке учебных планов, взаимодействия со специальными кафедрами для включения разделов, важных для конкретной специализации студентов. Например, при изучении модуля «Теория функций комплексного переменного и операционное исчисление» желательно взаимодействие с соответствующим инженерным учебным модулем, преподаваемым на

старших курсах кафедрой «Теоретические основы электротехники». Нужно рассматривать наиболее важные инженерные задачи и приложения, сэкономив столь дефицитное учебное время. При изучении модуля «Уравнения математической физики» желательно делать акцент на уравнении теплопроводности для студентов-теплоэнергетиков, а для студентов-радистов – на волновом уравнении и уравнении Лапласа. Кроме этого, необходимо обязательно рассматривать физические модели, описываемые этими уравнениями.

Междисциплинарность должна становиться важнейшим элементом методик преподавания всех учебных дисциплин. Наиболее сложной и актуальной задачей является соблюдение баланса между фундаментальностью и междисциплинарностью подготовки.

Заключение

В результате проведённого исследования естественны следующие выводы:

- выпускник инженерно-технического вуза, обладающий универсальными и в значительной мере междисциплинарными компетенциями, будет востребован в неоиндустриальном производстве, поскольку инженерная деятельность в новом мире приобретает всё более интегрированный, комплексный и инновационный характер;
- фактор междисциплинарности является определяющим при разработке содержания учебных программ подготовки современных инженеров;
- междисциплинарность становится важнейшим элементом методики преподавания фундаментальных дисциплин.

Статья поступила в редакцию 19.03.2020.

ЛИТЕРАТУРА:

- 1. Алексанков А. М. Четвертая промышленная революция и модернизация образования: международный опыт [Электронный ресурс] // Культура и безопасность. Интернет-журнал о культуре как факторе национальной безопасности. 2017. № 1 (13). URL: http://sec.chgik.ru/chetvertaya-promyishlennaya-revolyutsiya-i-modernizatsiya-obrazovaniya-mezhunarodnyiy-opyit-2 (дата обращения: 06.03.2020).
- 2. Бурковская М. А., Кленина Л. И. Программа развития современного общества «Индустрия 4.0» и актуальные требования к компетенциям выпускников технических вузов // Вестник Московского государственного областного университета. Серия: Педагогика. 2018. № 2. С. 8–15.
- 3. Введение в социологию техники. Системы, проектирование, модели образования: учеб. пособие / А. Л. Андреев, И. И. Ашмарин, П. А. Бутырин, В. Г. Горохов. М., 2017. 320 с.
- 4. Ковальчук М. В. Конвергенция наук и технологий прорыв в будущее [Электронный ресурс] // Российские нанотехнологии. 2011. Т. 6. № 1–2. URL: http://www/portal.ru/read/iInfrastructure/ Russia/nns/kial/convergence_kovalchuk#1 (дата обращения: 02.10.2019).
- 5. Подготовка элитных специалистов в области техники и технологий / П. С. Чубик, А. И. Чучалин, М. А. Соловьев, О. М. Замятина // Вопросы образования. 2013. № 2. С. 189–208.
- 6. Смирнова М. И., Родин А., Михайлов А. Н. Гуманитарная составляющая модернизации инженерного образования в условиях четвертой промышленной революции // Вестник Московского энергетического института. 2019. № 6. С. 138–145.
- 7. Стратегия и проблемы устойчивого развития России в XXI веке / под ред. А. Г. Гранберга, В. И. Данилова-Данильяна, М. М. Циканова, Е. С. Шопхоева. М., 2002. 414 с.
- 8. Фирсанов М., Гамбарян О. Россия в цифрах 2012-2013. М., 2014. 152 с.
- 9. Харари Ю. Н. 21 урок для ХХІ века. М., 2019. 416 с.
- 10. Шваб К. Четвёртая промышленная революция. М., 2016. 208 с.
- 11. Heckman J. J., Kauts T. Hard evidence on soft skills // Labour Economics. 2012. Vol. 19. Iss 4. P. 451-464.

REFERENCES

1. Aleksankov A. M. [The fourth industrial revolution and modernization of education: international experience]. In: *Kul'tura i bezopasnost'*. *Internet-zhurnal o kul'ture kak faktore national'noi bezopasnosti* [Culture and safety. Internet magazine about culture as a factor of national security. 2017, no. 1(13)]. Available at: http://sec.chgik.ru/chetvertaya-promyishlennaya-revolyutsiya-i-modernizatsiya-obrazovaniya-mezhunarodnyiy-opyit-2 (accessed: 06.03.2020).

- Burkovskaya M. A., Klenina L. I. [The "Industry 4.0" program of the modern society development and current requirements for the competencies of graduates of technical universities]. In: Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: Pedagogika [Bulletin of the Moscow Region State University. Series: Pedagogics], 2018, no. 2, pp. 8–15.
- 3. Andreev A. L., Ashmarin I. I., Butyrin P. A., Gorokhov V. G. *Vvedenie v sotsiologiyu tekhniki. Sistemy, proektirovanie, modeli obrazovaniya: ucheb. posobie* [An introduction to the sociology of technology. Systems, design, education models: textbook]. Moscow, 2017, 320 p.
- 4. Koval'chuk M. V. [Convergence of sciences and technologies a breakthrough into the future]. In: *Rossiiskie nanotekhnologii* [Russian nanotechnology], 2011, vol. 6, no. 1–2. Available at: http://www/portal.ru/read/iInfrastructure/Russia/nns/kial/convergence_kovalchuk#1 (accessed: 02.10.2019).
- 5. Chubik P. S., Chuchalin A. I., Soloviev M. A., Zamyatina O. M. [Training of elite specialists in the field of engineering and technology]. In: *Voprosy obrazovaniya* [Education issues], 2013, no. 2, pp. 189–208.
- 6. Smirnova M. I., Rodin A., Mikhailov A. N. [The humanitarian component of the engineering education modernization in the context of the fourth industrial revolution]. In: *Vestnik Moskovskogo energeticheskogo instituta* [Bulletin of Moscow Power Engineering Institute], 2019, no. 6, pp. 138–145.
- 7. Granberga A. G., Danilova-Danil'yana V. I., TSikanova M. M., Shopkhoeva E. S. *Strategiya i problemy ustoichivogo razvitiya Rossii v XXI veke* [Strategy and problems of sustainable development of Russia in the XXI century]. Moscow, 2002. 414 p.
- 8. Firsanov M., Gambaryan O. *Rossiya v tsifrakh 2012–2013* [Russia in the figures of 2012–2013]. Moscow, 2014, 152 p.
- 9. Harari Yu. N. 21 urok dlya XXI veka [21 lessons for the 21st century]. Moscow, 2019, 416 p.
- 10. Schwab K. Chetvertaya promyshlennaya revolyutsiya [The fourth industrial revolution]. Moscow, 2016. 208 p.
- 11. Heckman J. J., Kauts T. Hard evidence on soft skills. In: Labour Economics, 2012, vol. 19, iss 4, pp. 451-464.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Кленина Людмила Ивановна – доктор педагогических наук, профессор кафедры высшей математики Национального исследовательского университета «Московский энергетический институт»; e-mail: kleninali@mail.ru

Бурковская Марина Александровна – кандидат педагогических наук, доцент кафедры высшей математики Национального исследовательского университета «Московский энергетический институт»;

e-mail: burkovskayama@mail.ru

INFORMATION ABOUT THE AUTHORS

Lyudmila I. Klenina – Dr. Sci. (Education), Professor of the Department of Higher Mathematics, National Research University "Moscow Power Engineering Institute" e-mail: kleninali@mail.ru

Marina A. Burkovskaya – Cand. Sci. (Education), Assoc. Prof., Department of Higher Mathematics, National Research University "Moscow Power Engineering Institute"

e-mail: burkovskayama@mail.ru

ПРАВИЛЬНАЯ ССЫЛКА НА СТАТЬЮ

Кленина Л. И., Бурковская М. А. Междисциплинарность как важнейший фактор модернизации технического образования // Вестник Московского государственного областного университета. Серия: Педагогика. 2020. № 3. С. 124–130.

DOI: 10.18384/2310-7219-2020-3-124-130

FOR CITATION

Klenina L. I., Burkovskaya M. A. Interdisciplinarity as the Most Important Factor of Engineering Education Modernization. In: *Bulletin of the Moscow Region State University. Series: Pedagogics*, 2020, no. 3, pp. 124–130. DOI: 10.18384/2310-7219-2020-3-124-130